Convergence of Caratheodory solutions for primal-dual dynamics in constrained concave optimization
نویسندگان
چکیده
This paper characterizes the asymptotic convergence properties of the primal-dual dynamics to the solutions of a constrained concave optimization problem using classical notions from stability analysis. We motivate our study by providing an example which rules out the possibility of employing the invariance principle for hybrid automata to analyze the asymptotic convergence. We understand the solutions of the primal-dual dynamics in the Caratheodory sense and establish their existence, uniqueness, and continuity with respect to the initial conditions. We employ the invariance principle for Caratheodory solutions of a discontinuous dynamical system to show that the primal-dual optimizers are globally asymptotically stable under the primal-dual dynamics and that each solution of the dynamics converges to an optimizer.
منابع مشابه
Asymptotic convergence of constrained primal-dual dynamics
This paper studies the asymptotic convergence properties of the primal-dual dynamics designed for solving constrained concave optimization problems using classical notions from stability analysis. We motivate the need for this study by providing an example that rules out the possibility of employing the invariance principle for hybrid automata to study asymptotic convergence. We understand the ...
متن کاملSubgradient Methods for Saddle-Point Problems
We consider computing the saddle points of a convex-concave function using subgradient methods. The existing literature on finding saddle points has mainly focused on establishing convergence properties of the generated iterates under some restrictive assumptions. In this paper, we propose a subgradient algorithm for generating approximate saddle points and provide per-iteration convergence rat...
متن کامل2753 1 Approximate Primal Solutions and Rate Analysis for Dual Subgradient Methods ∗
We study primal solutions obtained as a by-product of subgradient methods when solving the Lagrangian dual of a primal convex constrained optimization problem (possibly nonsmooth). The existing literature on the use of subgradient methods for generating primal optimal solutions is limited to the methods producing such solutions only asymptotically (i.e., in the limit as the number of subgradien...
متن کاملRecovery of Primal Solution in Dual Subgradient Schemes
In this thesis, we study primal solutions for general optimization problems. In particular, we employ the subgradient method to solve the Lagrangian dual of a convex constrained problem, and use a primal-averaging scheme to obtain near-optimal and near-feasible primal solutions. We numerically evaluate the performance of the scheme in the framework of Network Utility Maximization (NUM), which h...
متن کاملA geometric framework for nonconvex optimization duality using augmented lagrangian functions
We provide a unifying geometric framework for the analysis of general classes of duality schemes and penalty methods for nonconvex constrained optimization problems. We present a separation result for nonconvex sets via general concave surfaces. We use this separation result to provide necessary and sufficient conditions for establishing strong duality between geometric primal and dual problems...
متن کامل